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1. Introduction and Summary

Readiness evaluation is one of the most important problem areas in
the study of complex military systems. Such studies usually encompass a
large number of measurements on the performance of the various subsystems
and then attempt to construct reasonable models that relate the evaluation
indices of the subsystems in a meaningful functional manner. This is
indeed very often a formidable task due to the complexity and multiplicity
of variables and functions. However, it is often the case that many of the
measured variables correlate with each other. These intercorrelations
reveal that variables contain some information on each other. Accordingly,
il these intercorrelations can be utilized in a manner that allows con-
siderable reduction in the number of factors to be considered, without much
loss in the information in the original data, a significant step can be
taken towards simplification of the problem. The present paper applies
several well-known multivariate statistical methods to attain this goal.
The main objective of the present paper is to discuss what some of the
available multivariate statistical methods can attain and to show that such

methods can be easily implemented by utilizing appropriate computer

-1 -
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packages. 1In particular, we discuss the methods of principal and rotated
factor analysis, and discriminant analysis. We apply these methods to
simulated data on 21 operational readiness variables related to Navy des-
troyers. The variables and the corresponding parameters were taken from

the Institute of Naval Studies study [5]. This study analyzes actual data
collected over several years on 83 destroyers. It extends to various
aspects of the readiness problem and relates operational readiness to mate-
rial readiness. As mentioned in our recent survey paper [3], we believe
that study [5] is of fundamental importance. It employs a variety of multi-
variate statistical procedures in a penetrating manner and provides a sound
analysis of complicated problems. Our intention is not to duplicate that
study but to provide an exposition on the application of the multivariate
methods mentioned above. We have chosen to create data sets by simulation
and not to use actual data since in this way we can generate data following
multivariate normal distributions having specific structures. Thus, by
applying the multivariate methods on different sets of simulated data we

can illustrate the strength of the methods and what can actually be achieved.
We will show that the systems (destroyers) in this example can be classified
according to the values of two or three factor scores, which relate all 21
variables in an orthogonal fashion. The factor scores can be graphed and
their periodic determination can provide important follow-up on the state

of readiness. Statistical control charts can be devised to provide early
detection of deterioration in the state of readiness. Similarly, if the
data consists of a mixture of two or more samples from different multivariate
populations, the plotting of factor scores obtained by a factor-analysis

of the whole data set can reveal the existence of different clusters. These
ideas will be demonstrated in the present paper. We start in Section 2 with
a description of the simulations and the structure of the data sets. Sec-
tion 3 is devoted to principal and rotated factor analysis. In Section 4

we discuss the application of factor analysis to detecting changes in the
state of readiness of systems. Here we also compare discrimination and
classification based on the factor scores to those obtained by step-wise
discriminant analysis. The mathematical development is presented in

appendices. We also provide some computer programs.

-2 -
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In the present study we construct data sets on the basis of the

operational readiness indices, ORI, of the following 21 variables.

Ship control
Navigation

Surface operations - CIC
(Combat Information Center)

Battle communications

Surface gunnery (non-firing)

AAW (Anti-air Warfare) - CIC

AAW - Weapons control

Engineering

Setting material condition

Damage control

NBC (Nuclear, biological, and chemical)
Low-visibility piloting

CIC - Assistance in piloting

CIC -~ Assistance in ASW
(Anti-submarine warfare)

ECM (Electronic countermeasures)
Modified full-power run

Surface firing

AA firing

Gunfire support

Communications

ASW operations

SHC
NAV
SOPS

BATC
SGUN
AAWC
AAWN
ENG
SMC
DC
NBC
LVP
CICAFP
CICASW

ECM
BFPR
SFIR
AAF
GUNS
coMM
ASW

The raw scores obtained on these variables by the 83 ships during

training can be obtained in the Institute of Naval Studies [5].

We consider

rather the ORI's which are indices obtained from the raw scores by the

transformation

ORI = 5 + 2 (NSCORE)

(2.1)
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where NSCORE denotes the standard normal fractile corresponding to the

percentile point of the raw score. More precisely, if x < x

(1) S (n)

is the order statistic of a sample of n observations on a variable x ,

, , -1 d . .
the NSCORE corresponding to X(i) is z(i) =& (;;I) , 1 l,...,n 3

where ¢(z) 1is the standard normal C.D.F. Theoretically the ORI values,

of each of the variables v, (i=1,...,21) , are normally distributed
with mean E{vi} =5 (i=1,...21) and variance Var{vi} =4 (i=1,...21).
In addition, the ORI variables, vi , are not independent. We assume

T , : . .
that the vector A [v ] has a multinormal distribution

107 Vo

N(H,%) , with mean vector } = 5%21, where 1 = [1,...,1]T, and covariance

matrix % = 4§ where § denotes the matrix of intercorrelations among

the 21 variables Voo For the purpose of simulating data sets we have

used the matrix R given in the Institute of Naval Studies {5] and pre-
sented here in Table 1. The simulation was performed according to an
algorithm described in Appendix I. It is based on simulating independent

standard normal variates, z , and transforming them to corresponding v,

variates (i=l,...,21) by employing recursive relations between joint and
conditional multinormal distributions. A Fortran program for such simulation
is given in Appendix IV. 1In Table 2 we present a sample of n = 50 vectors
of six variables (v

> Vs Vos ¥ le) simulated according to this pro-

1’ Vs 12°
gram. The sample means, standard deviations and intercorrelations are pro-
vided in Table 3. As illustrated, the sample statistics are generally
deviating to some extent (according to their sampling distributions) from
the parameters used. However, in actual cases the population parameters
are unknown and the analysis must be based exclusively on the sample values,

with the possible incorporation of some prior information, and this is what

we are doing here.
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50 SIMULATED VECTORS OF SIX VARIABLES
ACCORDING TO THE MULTINORMAL DISTRIBUTION N(S%,A&)
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TABLE 3

SAMPLE STATISTICS OF
THE SIX VARIABLES IN TABLE 2

SAMPLE MEAME AND ZTAMD. DE'.
ANS 4,550 4,577 4. 544 4.7e= 4,993 34,314
$T. DEV3., 1.9333 1,237y Z. 120 Z2.244 1.215 P T
CORRELATIONE MRTRI
vy V12 V14
0.335182 27 n.5139431
0, 252251 33 0,123076
0.2237437 27 -, 023331
1.000000 S5 0.e1TETT
nD.432125 nn D, 232939432
N.&17ay7 335 1.000000

It should also be remarked that the simulation is based on the matrix
of intercorrelations of the above six variables only. This matrix is, how-
ever, a submatrix of that given in Table 1 and can be obtained by reading
the appropriate rows and columns. In the course of the present study several
different data sets were simulated, employing the same algorithm with only

slight modifications from case to case, as will be explained later.

3. Principal and Rotated Factor Analysis

It is generally difficult to make comprehensive inference of multivariate
data without further analysis, due to the large number of intercorrelated
variables. Even in the case of only six variables it will be difficult to
discriminate between ''good' and 'bad" systems, just by inspecting the data
sets, or by performing a univariate analysis on each variable separately.

The methods of multivariate analysis are designed to provide the needed

information in cases of many variables which are highly correlated. 1In the

-7 -
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present section we discuss the methods of principal and rotated factor
analysis, and show how they can be applied to the evaluation of the readi-
ness of systems. An outline of the theory is given in Appendix II. We
refer the reader for an extensive development of the theory and computer
programs to the books of Overall and Klett [6], Cooley and Lohnes [41,
Tatsuoka [8], and Van de Geer [9].

3.1 Principal Factor Analysis

The main objective of principal factor analysis is to provide a
small number, m , of linear combinations of the original variables

vl,...,vp (2<m<p) so that (i) a large proportion of the total variance of

the original variables should be accounted for by the m transformed vari-
ables, and (ii) the transformed variables should be uncorrelated. It is shown

in Appendix II that the solution of this problem is obtained by determining

first the m 1largest eigenvalues of R and the corresponding eigenvectors;
followed by determination of factor scores for each system. Let

ll 2 eee 2 Ap > 0 be the eigenvalues of the p x p correlation matrix 5 5

Since R is positive definite, these eigenvalues are all real and positive

(with probability one). Moreover Al+"°+lp = p . Hence, choose m so that
(ll+°-°+km)/p is ''close enough" to 1. This ratio is the proportion of the
sum of variances of vi(i=l,...,p) that is accounted for (explained) by the

m factors. These factors are constructed in the following manner. Let

R(j) (j=1,...,m) be the orthonormal eigenvector of E corresponding to

A,(J=1,...,m) . The m factor-score variables corresponding to

3

v = [v v ]T are given by
v 170,

f =

1.7 .
i /X; R(j) Qo 3j 1,...,m (3.1)

where uo= [ul,...,up]T is a vector of standard scores corresponding

to , 1.e., uy = (vi--;i)/si , i=1,...,p , vy denotes the sample

X
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mean of the ith variable and . designates its sample standard deviation.

The m factor-scores are computed for each unit in the sample. The
sample factor-scores are uncorrelated standard scores. The coefficients

bij in (3.1) (i=1,...,p) are sometimes interpretable in terms of the

original ORI variables. We illustrate these ideas first on the p = 6 ORI
scores of the sample of 50 units given in Table 2. (Further analysis of all
21 ORI variables appears below.) The numerical results presented were
obtained by Program SIMU, presented in Appendix IV. The eigenvalues and
eigenvectors of the correlation matrix presented in Table 3 are given in
Table 4. These values were computed by employing a computer library sub-
routine which determines the eigenvalues and eigenvectors of a symmetric

matrix. This subroutine program was merged into Program SIMU.

TABLE 4

EIGENVALUES AND EIGENVECTORS OF
THE CORRELATION MATRIX IN TABLE 3

cIGEMYRLUE:S OF CORREL. MATRIA

XS A3 Xz Aé XA xl
dozodzal 0.332008 10022542 0D.223473 00700428 2. 743230
CIGEMVECTORE
(5) R(3) (2) R ) R
DL7P07e33 DL255720 0 - 025302 232 0.30353F
=, 3EFRPE OD.TEI4EZ 0, I222523 561 0.350454
0. 072203 —-.410352  0,735713 37V 0192352
-.a0E214 -LZE0V0E 0 —-.113133 0 0.S14023
0.11737V2 —-.221722  0.141075 32 0.3357a3
0. 032653 —-,213730 —-,5551:23 a4 0,.307325
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If we consider m=3 factor-scores in Table 4, we see that the

proportion of explained variability is %{X1+X2+A3) .78 . (In other words,

three factor-scores out of six explain close to 80% of the correlation

matrix E .) Notice that the first factor-score, fl » weights positively

each one of the six ORI variables, Vs Ve Vi Vs Vigs Vig However,
variables vy and vy obtain weights which are about 1.22 times larger
than those of Ves Vi, and Vi4 and about 2.6 times larger than that of Ve
In terms of the ship functions, factor fl emphasizes Ship control and
AAW-Weapons control considerably more than AAW-CIC or Low-visibility

piloting, etc. The second factor-score, f_, , emphasizes (AAW-CIC)

2 M3
and gives a large negative weight to Vig The third factor-score emphasizes
v5 (Surface gunnery) and deemphasizes Vgs Vs Vigs Vys - Thus, the three
dimensions of this factor analysis are: 'Ship and AAW control," "Radar and
information communication" and '"Surface gunmnery." 1In Table 5 we provide the
three factor-scores of the 50 units in the sample. Figure 1 presents a
scattergram of f2 versus fl . By indicating on the scattergram the unit
number of each point we can immediately discriminate between systems having
high factor-scores on the two dimensions (like 30,22,2) and those having low
factor-scores on both dimensions (like 8). Furthermore; by indicating the
zero lines (solid) and the lines at +1 (broken) we can obtain further

inforration on the state of readiness of the systems in the sample. For

example, systems 47 and 41 have high scores on fl but are in the lower tail

of f2 . This means that their control functions are '"good" but the CIC
functions are "bad." Similarly, systems 27 and 17 are low on fl but high
on f2 . Although this information is given also in Table 2, it is often

confounded and obscured. A scattergram of the factor-scores provides a

convenient expression of the relative state of readiness of the systems.

Suppose now that the sample of 50 systems consists of two subsamples
from two different multinormal populations. What will the factor scores
reveal? To illustrate numerically the result of principal factor analysis

on such a mixture of samples we simulated a data set in which the first 25

- 10 -
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Figure 1. Scattergram of the Factor-Scores f

Versus f1 for the Data of Table 5.

vectors are identical with the first 25 lines of Table 2 (N(S&,&%}) and

the last 25 vectors are simulated from N(%,&%) o The sample means,

standard deviations, correlation matrix, eigenvalues and eigenvectors of
these 50 vectors are given in Table 6. The corresponding three factor-
scores are given in Table 7. We see in Table 6 that in such a mixture the
correlations become larger and so is the maximal eigenvalue. The three
factor—-scores account here for 90%Z of the variability reflected in % d

versus f. .

In Figure 2 we provide a scattergram of f2 1

The points
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TABLE 6

SAMPLE STATISTICS OF A SAMPLE OF 50 UNITS
CONSISTING OF 25 UNITS FROM N(51,4R) AND
25 UNITS FROM N(%,A%)

ZHMPLE MEAMT AMD STAND. DEY.

vy \Z Ve A Vio Vig

<

~J

MEALS 2. SaE Z2.E77 Z.odd Ca i oL 93 c.914
ST. DEVS. =.1i07 S.013 S, 030 Z.2E9 i o [T Z.313
CORFEELATIONE MATRIN
1.000000 D.2113230 n.a2101z 0. = 0. V=54 0. 7303
0. 211330 1.000000 n.514413 0. 0. 5875 . 5117
5

n.&21012 f. 59
f. 204745
0. 75423

v
0. V0347

o
. .

.
. re=

I I I I X

(S0 P s AR N |

J
i
i
o1
-
=
e
I
(R
L

0.542152 1. 000000

=
= (T
e
-
_f
134

19V 0.363059 D.33038%  4.455704  0.32359245 . 121244

ZIGEMVECTORE

o
—~
(Y]
~

oo
~
(@2}
~

R(s) R(l)

0.210051  0,278220 = D.4az —-.S70114
—. 223332 0.754734 S 0.30 0. 354752
0. 03031e -, 32330227 12 0,35 0. 071749
—.EFERZE - Z2TS03 3 .43 —-. 330802
0. 133404 -, 147009 & 0,40 0. 123240
0.135243 -, 335033 30,30 0.5137225
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in Figure 2 representing systems 26-50 have been circled. Ve see a very
clear separation between the two subsamples. Although this example may
seem somewhat artificial it shows that principal factor analysis may reveal
clustering of subsamples in case the populations are sufficiently distinct.

A discriminant analysis can then be performed.

7

W weammm e b e e W a e e P e W v e i M e e
2,55+ .’ *
- |
- -
- *
]
1.4=2+ |
— » *
- P -
= . [
- + [ * -
(o . .
- - *
= e r .
- ] C - * . »
- * > - .
—. 75+ [ - *
.+ b
- * * (S .
= - -
1.8+ -
I e o TR N SPPOUTEE P Iy
-1.32 -1.21 =151 0. 00 0.2l 1.22

Figure 2. Scattergram of fz Versus fl in Mixed Sample.
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3.2 Rotated (Orthogonal) Factor Amalysis

In the present section we consider the method of factor analysis,
when the number of variabies (21) is considerably larger than the number
of variables (6) in the examples of the previous section. The simulation
is based on Program SNOR2, which simulates (raw) ORI scores and writes them
directly into a data file "RSCORE" in the computer. The sample means,
standard deviations are written into a file "SMNS" and the intercorrelations
are written into a computer file "MATRIX". The files "RSCORE' and ''SMNS"
are then read into a program which computes the standardized variables
zy (i=1,...,21) . These standardized values are written into a computer
data file "ZSCORE". The files "MATRIX" and "ZSCORE" can then be used to
perform a rotated factor analysis by one of the computer programs which may
be available in the computer library. We have chosen to use the SPSS [7]
factor analysis program. The program has the option of reading the correla-
tion matrix, rather than the whole data set. We therefore merged the file
"MATRIX" into the SPSS program. The sample means and standard deviations
of the sample of 21 variables simulated according to N(5%,4%) are given
in Table 8. The matrix % for the simulation is that of Table 1. The

sample correlation matrix is of size 21 x 21 and will not be given here.

TABLE 8

SAMPLE MEANS AND STANDARD DEVIATIONS OF
SIMULATED SAMPLE OF 50 VECTORS OF 21 ORI VARIABLES

4913 £
MEANS G047 G
4. 468 &
2133 bo8&7 e
ST. DEVS. 2,218 Le7%4 CRacH
Lo 1759 & EER

- 16 -
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The first step in the SPSS program is to compute the eigenvalues and
eigenvectors of the correlation matrix. All the eigenvalues are given in

Table 9.

TABLE 9
EIGENVALUES OF THE SAMPLE CORRELATION MATRIX

F OGN ETGENVALUE  raT
1 4070774

3 AL 0w /{,)
w e Wi,

11074

& SO7ALR

The eigenvectors of % are given in a matrix % of size p x m , called

the factor (structure) matrix. The m column vectors of é are defined

as

g =N Ry j=1,...,m (3.2)

- 17 -



T-385

where k(j) is the eigenvector corresponding to Aj 0 Al
17

v
v
>
\4
o
-

the m largest eigenvalues of . Obviously . = X, . Further-
EJ

P
more, if m = p then = I . . T is the spectral decomposition.
2HRG)
3=1

~

m T " ~
Let ﬁm = ‘Zl %j%j and Em =R - %m . It is desirable to choose m so
J=

N

that Em is negligible (or statistically non-significant). Tests of the
v

significance of Em are available (see Cooley and Lohnes [4,103].

According to the spectral decomposition,

o 2
hi = jzl Ajbij s i=1,...,p (3.3)

is the part of the ith diagonal element of E (the variance of zi) which
is explained by é. The parameter hi is called the commuﬁality of the

ith variable. 1In Table 10 we present the factor (structure) matrix and the

communalities.

The factor-scores defined in (31) can be obtained as inner products

of z with the column vectors of F = § Q_l , where Q is an mxm

diagonal matrix with entries A .,Am . When the number of variables is

10"
larze, it is generally difficult to interpret the factor-scores obtained
by the matrix F (see Table 10). For this reason various rotation
techniques were developed, which transform the factor (structure) matrix
X to a matrix A= é{ s R being an m x m (orthogonal) matrix so that
the column vectors of & have as many zero entries as possible. We con-
sider here an orthogonal rotation matrix R obtained by a method called
varimax. This method maximizes the variance of the coefficients of each
column vector of é (see Van de Geer [9,150]). In Table 11 we present
the varimax rotation of the matrix é of Table 10, as obtained by the

SPSS program.,

- 18 -



TABLE 10

T~-385

THE FACTOR (STRUCTURE) MATRIX S AND COMMUNALITIES

FACTOR

FHL

FAGCTOR
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Ve
Ve
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Ve
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TABLE 11
VARIMAX ROTATED FACTOR MATRIX é

FaGiar 1 Fen Tk

Vi e HPLED
vl cXLAD S
'\o‘| ' “ I\.E "'} f-} (:' :..l
Vi s LEREEG

Wi eI 7 G
B ey ey

Finally the factor-scores corresponding to the rotated factor analysis
are obtained by the inner product of z with the column vectors of
G+ FP =S8 ;L . These factor score coefficients are given in
VIV VI R VI ¥

Table 12.

- 20 ~
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TABLE 12

FACTOR SCORE COEFFICIENTS
OF ROTATED FACTOR ANALYSIS

Farn A

The coefficients greater than .15 are marked in Table 12. This can help
to provide proper interpretation to the factor-scores. Scattergrams of the

factor-scores of the 50 simulated systems are given in Figures 3 and 4.

- 21 -
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4. Detecting Deterioration in Readiness,
Discrimination and Classification

We have seen in the previous section that the readiness of systems
can be represented by principal factors or rotated factors. This is a
combined measurement of readiness, which transforms the basic ORI scores
and reduces them to a small number of orthogonal factor scores. This repre-
sentation of the readiness of systems is particularly useful for control
purposes. Suppose that we wish to follow the state of readiness of a par-
ticular system. We can periodically make observations on the ORI variables
and present the corresponding factor scores on the scattergrams given by
Figures 3 and 4. Significant deterioration in readiness will be detected
by the location of these points in the scattergram. Moreover, if a whole
group of points cluster on the scattergram on the negative side of a factor
there may be an indication that this group originates from a different
population and further analysis (for example, discriminant analysis discussed
later) should follow. Such a case was demonstrated in Section 3 and illus-
trated in Figure 2. 1In Figure 5 and Figure 6 we illustrate the factor
scores obtained by a rotated factor analysis of the 21 ORI variables, when
the sample of 50 systems consisted of 25 units from the distribution
N(S&,4§) and 25 units from the distribution N(%,4§) . As in Figure 2,
the points corresponding to the units in the second subsample are circled.
It is seen again that most of the second subsample points are concentrated
at the negative part of fl - There is a strong indication of a significant
difference between the two subsamples. The data consisting of the two sub~
samples presented in Figures 5 and 6 were further subjected to discriminant
analysis of the SPSS. In Appendix III we outline the theory of discriminant

analysis. We present here the main ideas and results.
T
Consider products & v for vectors Y in subsamples 1 and 2.

Suppose that the observed vectors in subsample 1 follow the multivariate

distribution N(Hl,Qg) and those in subsample 2 are distributed like

N(H?,Qg) . The transformed variables w = &TX have the normal distributions,

- 24 -
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Figure 5. Scattergram of Factor Scores, f2 Versus

in the Case of Two Subsamples.
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N(&TH1,4&T8&) and N(&Tg2,4&TR&) » respectively. The problem has thus

been reduced to that of discriminating between two univariate samples from
normal distributions. The value of & to choose is that which maximizes

the F-statistic

= )
nn, - (w1 w2

2 52
n

F = (4.1)

o

where ny and n, are the sizes of the subsamples, Ql and 52 the
corresponding sample means of the w variables, and sﬁ the pooled estimate
of the samples within variance of the w variables. The SPSS program pro-
vides the optimal vector & and the variables which significantly influence
this discrimination (those for which the corresponding components of the
optimal are significantly different from zero.) The procedure according to
which the variables are chosen to be included in the discriminant analysis

' The reader is referred to

is called a "Step-Wise Discriminant Analysis.'
Afifi and Azen [1] for a description of the procedure. In addition, the
SPSS program performs a classification procedure, which indicates whether or
not each one of the vectors in the subsample belongs to the corresponding

population (see [1]).

The results of the SPSS discriminant analysis on our simulated data
(25 vectors from N(S%,4R) and 25 vectors from N(%,4§)) provide:
(i) The means of each variable, within the subsamples
and total;

(i1) The standard deviations of each variable, within
the subsamples and total;

(iii) The matrix of within samples intercorrelations
(pooled estimates);

(iv) Optimal coefficients for significant variables;

(v) Centroids of subsamples, Gl and Qz , for the
optimal weights;

(vi) Table of the classification results.

We provide some of the results in Tables 13 through 18. Table 15 presents

the actual classification for every case in the data. TFor each case we obtain

- 27 -
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TABLE 14

OPTIMAL DISCRIMINATION WEIGHTS AND SUMMARY
OF CLASSIFICATION RESULTS: TWO-SUBSAMPLES DATA

STANDARDIZED DIZCRIMIMAMT FUMCTION COEFFICIEMTE
Frc 1

W1E ~. 19723
Y15 - 133

W1z -, 33173

W1 —. 3035

AMETAMDARDIZED DIZCRIMINANT FUNMCTION COEFFICIENTE
Fudz 1

W13 -, 0Ensa
Y15 -. 5043

Wwiv -. 104110
Y13 - 10121
] -. 11325
COMZTANT 1.159571
CEMTROIDE OF GROUPE IN REDOCED ZPRCE

=Y

o=

DIZCREIMIMNANT AMHALYEIE

FTLE HOMAME
FREDICTION REZULTL -
HO. OF FREDICTED SROUF MEMEEZRIHIFP
ACTUSL GROUF CRZEE: LF. 1 GF. o

)
I

SROUF 1 25, 23, 2
. 0 =

GROUF c o5, 0. o5,
o 0% 100, 0%

PERCEMT OF “SROUPED CARIES CORRECTLY CLATSSIFIED: 24, 00%

- 29 -



T-385

TABLE 15

SPSS CLASSIFICATION ANALYSIS OF TWO-SUBSAMPLES DATA
DISCRIMINANMT AMALYSIIS
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TABLE 16
MEANS AND STANDARD DEVIATIONS IN THREE-SUBSAMPLES DATA
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CLASSIFICATION ANALYSIS OF THREE-SUBSAMPLES DATA
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the likelihood of the observation, given the group P[%lG] and the Bayes
posterior probability of the group, given % . We see in Table 15 two cases

in group 1 that behave like the cases of group 2.

The discriminant analysis becomes more complicated, but at the same
time more interesting, when the number of subsamples (groups) is greater
than two. Generally, if the number of subsamples is k , the analysis is

done by computing k-1 discriminant functions, which maximize F-statistics

that can be obtained by k-1 orthogonal vectors &(i) (i=1,...,k-1)

The results are then plotted on a 2-dimensional graph, with orthogonal axes
representing the first two discriminant functions. We illustrate this in the
following example, analyzed by the SPSS program, on three subsamples of sizes

n, =20, n, = 20 and n, = 10 . The cases in these subsamples were simulated

1
according to the multinormal distributions N(S%,h%) , N(Z%,hﬁ) and N(%,&%) ,
respectively. The scattergram in Figure 7 shows that one can well discriminate
between these subsamples by means of this analysis. We also learn from the

and v

analysis that only variables V8’ v9, VlO’ V12’ Vl3’ Vlh’ Vl7’ Vl8 19

contribute significantly to the discrimination.
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APPENDIX I

SIMULATING MULTIVARIATE NORMAL VECTORS

The simulation of p-dimensional multivariate normal vectors is based
on the following well-known result (see T. W. Anderson (2.

T . q .
Let x = [xl,...,xp] be distributed like N(é,%) . Suppose that

§(1) = [XA""’Xr]T and %(2)

T
1 = [xr+l,...,xp] , for 1 <r<p. Consider

the partition

ey
7
= | _(2)
*7 |k
and
]
- SPRLOL!
b = ]
%21 uz:zz
~(1) . . . (2) | . ) )
where & is rxl-dimensional, % is (p-1r)xl-dimensional, % is
11
rxr and XZZ is (p-r)x(p-r) . Then, the conditional distribution of
(2) (L)

X , given x , is the multivariate normal N(gz.l’%zz.l) , where

(2)

1 -1, (1)
Erq =&y tIadn®

@)
&

(A.1.1)

Loo1 = &2 " &n %ﬁ %12

Let p be a diagonal matrix consisting of the diagonal elements of % ,

i.e., R = dlag(all,...,app) . The correlation matrix % is obtained from

% by the relationship
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1/2 1/2

T=R""RR (A.1.2)

Thus, if A is a p-dimensional standard multivariate normal vector, i.e.,

o 0 N(Q,&) , then

1/2
&$=é+13/}e, (A.1.3)
We consider now the problem of simulating A Suppose we have a procedure
for simulating independent standard normal random variables, Z1sZgseee
z; v N(0,1) , 1 =1,2,... we set up =z . The conditional distribution of

; 2 - ]
u, given u, 1is N(plzul, 1 plZ) , where pl2 is the correlation between

u, and u, . Accordingly, given u; o, we obtain u, by the formula

1 2 2
_ 1/2
u, = plZul + <l p12> 22 (A.1.4)
Suppose we have already simulated the values of Upslgseeesly (k=1,2,...,p-1)
Let %(k) designate this vector. The conditional distribution of Uy o
given g(k) is obtained according to (A.1.1) in the following manner. Let
§k be the correlation matrix of ¥(k) . Consider the partition
&) 1 (k)
ey | R P
r% =1- _(kST_l = = (A.1.5)
P 1
N !
where p(k) is the vector of correlations between W and the components
¥
of (k) Hence, the conditional distribution of u given () is
X ’ k+1 hv
normal with conditional expectation
d 1 (k) (k) —1 (k)
Mt = E{“k+1|¥k} 3 R (A.1.6)

and conditional variance
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o (k)T ., (k),-1 (k)
Tag =17 @ DTERTD TN (A.1.7)

Finally, Wl is determined By the formula
W1 T Ml + T+l * Zktl ° k=1,2,...,p-1 (A.1.8)

An alternative approach for simulating the vector i3 is as follows:

ggT . Simulate p i.i.d.

Let g be a non-singular matrix such that %

: T
N(0,1) random variables zl,...,zp . Let gz = [zl,...,zp] . Then

R=Cz (A.1.9)

v

has the standard multivariate normal distribution N(Q,&) . The matrix

1/2 X , '
8 = %Q / s, Where B is a matrix whose columns are the p eigenvectors of

B and Q is a diagonal matrix of the eigenvalues of § o
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APPENDIX II

PRINCIPAL AND ROTATED FACTOR ANALYSIS

Let g~ N(Q,E) be a standard multivariate normal vector. The

- T ’ ! T
distribution of & R is like that of N(O,& g&) . Let Al > Az 2 000 2 Ap >0
be the eigenvalues of R . We wish to determine a vector (functional) & 5
with length ||2|| = 1 , which maximizes the variance of &T& . The
Lagrangian is
T T
f(&,%) = & E& = A(& &—l) (A.2.1)

Differentiating f(&,A) with respect to & yields the eigenstructure equation
o _ o}
R& = Al& (A.2.2)

Notice that

IRE S, o
ERL - Mg
Thus, &(l) is an eigenvector of % » of unit length, corresponding

to the largest eigenvalue of R , namely to’ Al which is the variance of

T
A

Similarly, let &(2),...,&‘p) be the eigenvectors of unit length

of % ,» corresponding to Az,...,kp . Notice that the variance of

@ 1s A (=1,....p) and that

cov(&(i)?%,&(j)T%) =0, all i# 3 . (A.2.2)

Indeed, if %i = Ai&(l)&(l)l s 1 =1,...,p , then the spectral

decomposition of % is

X. (A.2.3)
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Furthermore, for any i # j

(1)T GHr (l)T
copty o ) Ry
(A.2.4)
P 3 q
1T, ,G)
= n § L =0
k=1 A %kx
Let B = (&(1>, .’&(p)) be an orthogonal matrix with columns which

are the eigenvectors of % . The distribution of

£ = /&-1/2%% : (A.2.5)

is like that of N(Q,&) ; where J = diag(Xl,...,Xp) . Indeed,

Q?% v N(Q,Q?B&) . But E?%R = Q . The components of £ are called the

principal factor scores, corresponding to JL The orthogonal transformation

of n , given by (A.2.5) yields independent standard normal random variables.

Since trace R = trace Q = 1 Xi = p , the ratio Xi/p (i=1,...,p)

i=1
is the proportion of the total variance of R accounted for by
fl (i=l,...,p) . 1I1f we choose only the first m (1<m<p) eigenvectors of
R, corresponding to Xl 2...2 Xm , and define %(m) = & (l)’.,.’&(m)] ’
A(m) = diag(%l,...,Xm) , the transformation szgzk(m) u yields the first
m components of { . The concepts of communality and the nature of rotated

factor analysis was explained in Section 3.
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APPENDIX III
DISCRIMINANT ANALYSIS

Suppose there are k groups (from different populations). We assume

that these groups constitute random samples (of systems) of size

k
n, (i=1,...,k) . Let N = I n, be the total number of observations. Each
=1

observation is represented by a p-dimensional random vector, X having a
multivariate normal distribution like N(Hi’%)
We define the following sample statistics.

The within groups sample covariance matrices

s - 53) 353"=1,000,01 5 i =1,....,k (A.3.1)
where
n
(1) 1 (i) (l) ( (i)
= 5 (x, ) (x ) (A.3.2)
il n;-1 oo q

is the sample covariance between xj and Xj' within the ith group

(i=1,...,k;3,3'=1,...,p); and §§1) (i=1,...,k;j=1,...,p) is the ith group

mean of the jth variable. The pooled within covariance matrix is
“a(@)
5 W=k 2 (n.-1) ) (A.3.3)
L N-k i=1 a5 % AN

Similarly, we define the between sampl;§ covariance matrix

4

f@ [b v:J’J “1,---,P] » where

k

=) n, GV R GV R) (A.3.4)
1

> k 3
with §j = % Z n xél) » as the grand mean of the jth variable j = 1,...,p
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If L= &T& , an F-test of the significance of differences between

the centroids of the k groups is
T
?& =5 (A.3.5)

oe | &
=

We determine & to maximize F& . Notice that H is non-singular with

probability one and the rank of B is k-1 . Differentiating F& with

respect to & yields the gradient

T _(;iy_/é)_f ‘_( TJ%) R - (& T%)X%] (A.3.6)

Thus, the vector & which maximizes F& should satisfy the equation

B& = F WL (A.3.7)

or by multiplying (A.3.7) by E—l we obtain the eigenstructure
-1
W B = F&& (A.3.8)
where H—¥§ is positive semi—-definite, of rank k-1 .
Let Xl > Xz 29092 Xk—l > 0 be the ordered positive eigenvalues

of w—l% . Let &(1) , i=1,...,k-1 be the corresponding eigenvectors
(of length 1). The functions

_ DT .
d =& 7x 1= 1,...,k1 (A.3.9)

are the discriminant scores corresponding to the vector X . The eigenvalue

Al is the maximal F& statistic, Xz is the second largest, etc. 1In

- . ey . i
Section 4, the discriminant vectors (functions) & (1) as well as the

discriminant scores are presented. In the case of k>3 it is customary
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to present the points (dl’dz) of each case graphically, on orthogonal
(1)

is orthogonal to s

T ]
systems of axes. Note that although £ &(1 )
i,i' =1,...,k-1 , the random variables di are not necessarily

uncorrelated.
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APPENDIX IV

COMPUTER PROGRAMS

In the present appendix we provide two computer programs: (i) Program

SIMU and (ii) Program SNOR2.

Program SIMU, in FORTRAN, provides a complete package of simulating
6-variable multinormal random vectors, according to given distribution means,
standard deviations, and correlation matrix. The simulated random vectors
are then subjected to principal factor analysis. The program computes and
prints the simulated sample means, standard deviations, and correlation
matrix; it applies a library subroutine program to determine the eigenvalues
and unit length eigenvectors and prints these statistics. After this the
program computes the principal factor scores and applies a two-dimensional

graphics subroutine to present the scattergram of f2 versus fl !

Program SNOR2 was designed to simulate 21-variable multinormal vectors
and prepare the result for use in subsequent SPSS analysis by batch process.
The computations of all subprograms were performed on a Honeywell GE-430
time-sharing computer. The results were merged in a proper manner and copied
into a tape from which the batch was then read into a UNIVAC 1108 computer
for the SPSS analysis. In the following we provide specific explanation of

the iwo programs and copies of the programs.

4.1 PROGRAM SIMU

Block Lines Designation
1 100-130 Specific merging of library subroutine

functions for
(i) Solving linear equations: LINEQ
(ii) Finding eigenvalues and eigenvectors
of a symmetric matrix: EIG1
(iii)-(iv) Simulating standard normal variates:
XNORM, RANDX.

2 140-230 Dimension statements and definition of constants.

Wi



Block

6

10

11

12

13

14

Block

1

Lines

250-320

330-390

400-870

880-970

980-1080

1090-1200

1210

1220~1310

1320-1440

1450-1600

1610

1640-end

4.2 PROGRAM SNOR2

Lines

100-130

T-385

Designation

Reading means, standard-deviations and
correlations parameters from a data file
""CORR"

Setting initial zero values for sums, sum

of squares, and sum of products of simulated
variables.

Recursive simulation of 50 6-dimensional
multinormal vectors and computing their sums,
sum of squares, and sum of products.

Computing sample means, sample standard
deviations, and sample correlations of the

simulated vectors.

Printing the sample means, standard-deviations,
and correlation matrix.

Preparation for computation of eigenvalues and
eigenvectors of sample correlation matrix.

Computation of eigenvalues and eigenvectors
of sample correlation matrix.

Printing of eigenvalues and eigenvectors.

Ordering the eigenvectors corresponding to the
M largest eigenvalues.

Computing and printing the M factor scores.

Graphing the 2-dimensional scattergram of

f2 versus fl .

Subroutine Program PLT1(N,-,*)

Designation

Merging library subroutine programs for
(1) Solving linear equations: LINEQ
(i1)-(iii) Simulating standard normal deviates:
XNORM, RANDX.
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Lines

140-240

250-320

330-390

392-875

880~-1085

1090

T-385

Designation

Dimension statements and definition of
constants.

Reading means, standard-deviations and correla-
tions of 21 variables, from data file "CORR'".

Setting initial zero values for sums, sum of
squares, and sum of products.

Recursive simulations of 2l1-dimensional
multinormal vectors and writing the results
directly into computer file '"RSCORE".

Computing the sample means, standard deviations
and intercorrelations of the 21 variables and

writing the results into files "SMNS" and "MATRIX"

END.

= Ayl
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PROGRAM SIMU

ZIm 15: 2

[

ZHI ZAT 101372

1O0ELIESsLINEDs 5 5 o4e

I11OFLIEEIGLrn s obe

1Z20ELTIEy AHORM: » v # oo

1Z0FLIERAMIE » 2 e

1410 DIMEMEION Si5) sR (A Al s AW S s ED B0 2 ZLED s LSS s BECS o E 0T
150 DIMEMZION Z (82 »F iR Q2 s EMISY »ESD SN s ER G e &2

150 DIMEMZION WOS02R2 sEGCE A » TEMFL CAI 2 TEMP2 05D s TS 2 EHOUS LD
170 DIMEMZION EL V40 » IT 3 W 50220

1210 DIMEMZION AMCS0r 2F1 S0y 2 F2 0500

1325 DIMEHZION ERE 0530

1310 =k

200 M=3
=10 E=E—-1

eyl H=50

=230 A=

240 U=HM0RM =1, 3

250 CHLL OPEMF o1 "CORR"
2a0 SEAD VL Ly RNV IID s I=1a K
270 1 FORMATaF3. 20

1 READ 11y CZD0In e I=1akD
DO 2 I=1.K

FEAD S22 cRCIs A s d=1a kD
FORMAT (aF3=., 20

COMTINUE

220 DO 23 I=1sk

230 ToIs=0,

250 c=Unls=0,

2E0 Dd 20 J=1+%

e o 0
U
hEn]

D103 [ o T

—
L
I

aT0 Folsda=0,
30 20 O ZONTIHUE
I 25 COMTIMUE

300 DO 5 I=1.H

350 200 U==HORM 0,

450 Z 1=l

470 AU =RV O DY #2010
330 Milslo=m010

3430 Tl =T 1o 4= 010

500 EEDCL=EEZD LD Ol w00
=10 U=:MORM D,

S22 ZOEI=RCl s 20210+ eSORT L, —R U120 #R 1200
L AC2I=AY (2 HID 02 eZ (2D
540 T s 20 =502

=50 Ti2y=T(2r+5 02D

S5 D2 =EZD )+ (2D #X (2D

570 0o s Jd=3sK
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=T dl=1-1

TR Dna Ll=1s01

AT D3 = La=1s.11

Sl CellslZd=R{L1l,La}

= COMTIHUE

2 CONTIMUE

A DO =% Li=1s.11

el EcLid=R{l 1y

Y| EcLix=Bl1>
COMTIMUE

Rl CALL LIMERGZ»Ex»JJe1sEkD
B30 RIR=0.

T H=1.

70 0O 10 Li=1s.1]

Van Ha=H+B L1y #2012

Fa0 REA=RI0O+BECL1I>#E LD
740 10 COMTIMUE

T30 H=SHORM o0,

DL |

[
o T
o=
=] 0

g

<

=
i

FE=3L SO =HALeZART 01, —RELD

v WO y=AW O 0 +EDI 0y 2 0 )0
Far WTe dn =00

AN T dn=T O+ 1

o ERDC I =ETDC 00 45 0 1 i 1D
10 A& ZOMTIMUE

2N 00 &a L=1skE

a0 00 &7V Jd=1skK

40 Pily sy =P Cly DD+ (L0 #0000
5 ¥ OCOMTIMUE

=1l &6 COMTIMUE
i S COMTIMUE
-
n

DOy

20 ug v I=1».k
0 EMCIN=T<I> 78N
10 MI=CAMSESDCID T CId«T CIx s CAMN® C(AMN-1.32
0 EZDCIN=Z0RT (WIs
g v1 oa=1.1
GBI = ANSP (I 1D =T (I3 T C10 0 AN CAN-1.30
ERCIs oy =0T s ¢EZD I #EID I 2
ER Gy ID=ER Iy .12
Y1 COMTIMUE
VOOCOMTIMUE
FRIMT 20
20 FORMAT (5Ky "ZAMPLE MERMEZ AMD ETAMD.DEY. "y~
1000 PRIMT 35» (EMCID » I=1 kKD
1010 PRIMT 25 dEZDCIN »I=15KD
1020 35 FORMAT (S,aF10,30
1020 PRINT F0s
1040 30 FORMAT {735y "CORRELATIONS MATRIK™»~ D
1050 Dd 21 I=1sK

[N EA]

¥}

N =

Ly

(S T N WY Y A IR NN
000 = gy L) a0
e R B e R e B o i e R )
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1050
1070
1030
10320
1100
1110
112n
11210
1140
1150
1140
1170
1130
1130
1z0n
12110
1220
1220
1240
1250
1&an0
12¥0
1220

oR0
1300
13110
1220
1230

1=410

DOUS BV

1500

o0
— [

10n

110

120

140
1=0

145

150

153

FRIMT 22 vER I o s J=12KD
FORMAT CSHa&F 10, &0
COMTIMUE

Do 3= I=1»k

ng 34 JA=Isk

IFCI-12 95:353275

I.1=.1
=0 TO 29
IFCI-30 B7 37,33

50 TO 29

I =il—12 eK-T®I-102+)
EHCI ly=ER I». 10
COMNTIMUE

COMT INUE

CALL SIGL CEHEGsk»2. 0E~12»TEMP L TEMFZ, 12K

PREIMT 100

FORMAT dorw e S "EISEMYARLUES OF
FRINT 110 cEH O » d=1 00
FORMAT cSaaF10. &2

FRIMT 120»

FORMAT & s "EIGENVECTORE" » 2
D0 120 I=1.K

PRINMT 140y cEGCT b s d=1»ED
FORMAT 3 sBF 10,20

COMTIMNUE

ELC1d=EHCLD

ITila=1

00 150 L=1+M

20 130 I=1sK
IFCEL Ly —EHCINY 14521452150
L Ly =EM I

ITeL»=1

COMTIMUE

LTI=ITLD

00 185 Jd=1sK
EGSCdalLd=ERils LTI
COMTIMHUE
EHCLTIN =0,

ITeL+10=1

SLeL+1=EHLD

COMTINUE

PRINT 200y
FORMAT v s Sy "FRCTOR ZCOREZT
pd 1vo I=1»H

AMcIr=1

D3 1v3 L=1+M

Welald =0,
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13510
1520
15240
15410
1550

=31
1371
1230
1530
1500
1510
120
1540
157510
1550
1570

— o 0
=S T

ol

o e T v R B e R e R e R e B e B v Bl

P R B I

PO IR SR R Wk B B BN Sl BRat¥ e BN TR0 B By B W W

o e 03 TO e S G0 O L R

Tid = a7 o0 GO =J 10
[ R ene B S o e v S o B o

e b e b b b b b bk b b b b b b b b R e b b e e b b e e e
=

N T R a ARt Y a SN0 SR L K K N R X )

e ST W) I CRR RS

=

13210
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Dd 130 J=1sK _

WiTeLa =y CLald #EGE s L) el uTs 4y ~EM 0 2 SEZD D
COMTIMUE

WTaLy =7 0T Ly #ZRRT CEL (L))

175 COMTIMUE

210

170

=J O [0 0

1z

FRIMT 21021y W CIeldsl=15M

FORMAT €Ses T4 2F10, 40

F1loIn="rIs12
Soln=y il 2n
COMT IMUE
CALL PLT1MsFlsF20
=HD
SUBROJTIME FLT1 M =2
DIMEMZIOM “old o7 1D
CALL PISET OSMIMs SMAS s YMIM s MARRD
CALL TPLTLIOMe = o WM IMe XMAS YHMIMH ¢ MAED
RETLUREM
EMD
TUEBROUTIME PEET CxMIMe sMES s YMIM FMERD
=M IM=2,
H“hAE=1.
YHIM=2.
THMAH=1.
FETLREN
=MD
SUBROUTIME ZPLTL iMr#Ee o SMIMe MAR s THIM PHMERD
DIMEMSION Se1d o il o 3CL A1 »WECL 0212 » ILIME €510
IFCEMIM=SMRAR) 22303
CHRLL AMAX (M KoM IMs KMAKS
IFOYMIM="'MEX) Frbsh
CHLL AMAK MY oM IM VMR
CALL PECL L SMIMyTCALR » Y MRS s Ry SE0L o YECL o WM IM e WMARD
CALL GERO40 ILIMEY
DO 12 K=1s21
CALL GZROGKs ILIMED
CALL ZEPT MK e v o VECL y WMIMe ZCALE ILIMNE 1R
CALL TYRPIT akeECls ILINMES
COMTIMUE
CALL RZROCOs ILIMEX
CALL PECLC+AMIN»SCALA » " MAR ey R XZCL W SC0L» Y MIM» “MAKD
RETHREN
END
SUBRPOUTINE AMARK (Ne Ry XM IM SMAXD
DIMEMSION (1>
AMIM=$ (12>
AMAS= 01D
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13320 I3 1 J=2.H

1290 IF A Tn JLToEMIMy SMIM=K L
0o IF CA0ty JaT . SMAHD HMAKM= G )
2010 1 COMTINUE

c0zn RETURHM

2030 ENI

c 040 ZUBROUTINE P2ICL a3 1IH~ZCﬁL PSR WECL s VI 2 Y M IN e MM

SOEN DIMEMEZION #3CLOa1M WSl 0210
S 0A T S0 TO (S5sGh s

2070 ECALR= CAMAH-=-XMIMNY <510,

ZE0 SCALY= OYMAS-YMIMY <20,

Z03n m=. SeETALY

zina 0 10 I=1.81

110 AI=I-1

2120 AECL I =sSMIN+ATISSCALE

c130 IFCI-212 1121110

c140 11 WZCL oI ="MIM+20.-AI>+3CHLY
2130 10 COMTINUE

Z14a10 FRINT 132»

2170 12 FORMAT Crwen

Z1E0 =eTURN

[}

2130 ) F‘F.’.I'_r'iT Sl CEEZCL I s I=19812100
o S0 FORMAT SF11.&»aF10.30

2210 =ETUREN

Zaen oD

n ZUEROUTIME GZROCKs ILIMED

1 DIMENZION ILIME AL » IEYMO3ED
i DATA ITEYMOLd s IZWMOZr s ISVMER " "yt "y et s
1 =5

| IFCEY 123281

L=1

I0 2 I=1.51

0 ILIMECII=TIZYM Ly
10 CAATIMUE

CDCH S0 TA (S22 .0

IO & I=1sn1»10
ILIMECIN =12 M (30
2350 FRIMNT 11 ILINE
FORMAT (axs .. " a5l
2 3 RETURHM

:JU EHD

S0 ZUBROUTIME ZEPT MK eXa Vo 30U » MMIMe SCALK ILINE LR>
2400 DIMEMSION .’fl'l\rl'l)’ILIH':("-l-lvl L T2 2 TEYM R

c410 DATH IBLs cIZYMEInsI=1ad.r” B P - R R
2420 0 5 I=1»H

=430 IFCYCIn =fZCL kD —RY S92»5

IFCYCIa="YICL KD +R> Ss5e 3

M= CIY ~=MIMY 2SCALKE+1LS

2450 IFMY Sy 57

naronarm
LRSS N U S S W VI A O o T
LY ORI o L O s I R

it

fan

NN RN NI (RO (WO G U
LA

1 Qo

L

-

P Rt

il
dn
—

r
s
&1y
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IFM-51) E»5s5 '
IFCILINE M ~IBLY Sa303

ILIME My =I&WM LD

0 TO = °
ILIME My =13 M (2l

COMTIMUE

RETUREM

ENMD

SUEBROUTINE TYPIT K ¥IZOL» ILIMNED
DIMEMSIONM YECLO210 2 ILIMECSLD
JE=K+4

IFCAZ~13-5850 051280

PRIMT 3»%ICL KD »ILINE
FORMATCFG. 2 "+ " s 1XaB1AL 16y "+1"2
50 TO 12

PRIMT 1&»ILINE

FORMAT (BXy " ="21RAsB1R1s 1Ky "—1"2
RETURM

EMD
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PROGRAM SNOR2

J.D: 3HIRE
LIST

AMaRe2 153: 44 ZHI IAT 10144783

I00ELIEBsLIME s » v o+s

120ELIEy 4MHORMr 5 v+ oo

120FLIE»RAMDE y » » oo

140 DIMEMZIAON ﬁiEl?:RﬁEl!El?!HwiElﬁNEDiEI?!ZfEIPNCiED?ED?!BﬁEUﬁNEiEU?
130 DIMEMZION Z0210aP 212102 EMOE1D s ESD V210 2ER VS 210
140 DIMEMZION WOZDe 21 2T o210

130 =2l

=210 fl=k—-1

220 =510

230 AM=M

=40 WEEMORM =100

230 CHLL OPEMF 1 "CORR™)

2 FERD G112 DAY ID s I=1akD
2¥a 1 FOPMBTC21F3.2>

220 HERAD G111 CZDCIn e I=1ekD
230 DO = I=1.k

=00 PERD OIS 20 SR OIadr e d=1s kD

C FORMAT C21F3, 20
20 FOCOMTIMUE

230 00 25 I=1.k
340 Tola=n0,

250 szl vIs=n,

3a0 D3O 20 d=1sk
3T FoIs dd=0,
COMTIMUE

] COMTIMUE

= DO 1000 I=1,50
1

1
iy
=

(X

=

IO RY ]
0

==MORM 0,
1000 COMTINUE
310 DO % I=1+H
410 IFYI=-212 200400305
120 a0 LF=1 -
125 =0 T3 205
320 300 LF=2
4273 D3O 200 J=1.k
440 AN =RV (D -2,
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4 435
347

1510

41‘:1—

=
Ly

452
153
3510
4575
471
4320
30
S00
310
mragi!
530

e
250
SE T
L
S0
=l
l:»l_l I
=B Rl
=rea i
=30
=30
Rl
l'" S0
Vil

(R e Y S B X e
R el B el B )

=l

% M B B B O L) u

o
=

o) 1 ses

n

CidoCo 00 00 00

200

= oo

11

CONTIHUE

a0 TO 205

IFCI-41d 305,505,205
LF=2

DO 5035 J=1sE

AV =R/ O -2,
COMTIMUE

=xMORM 0, o

Teiv=y

AUl =AM I +EDCI AT L
WoIsta=m01s

Tola=T i+ 010

EX D-l-—E SURS IR XES BIN Cae i

TEDRCHIE SO E IS I OC =y

na

Colls L2 =Rl 130

CONTIMUE

COMTIMUE

g s Li=i.l)

Eolia=RilL1s. I

EcLid=BcCl 1)

COMTIMUE

CRLL LINERCCy BrdJs 1 2KKD

Fze=0,

H=1.

DO 10 Li=t»,.4J

H H+EBolL 10 eZ i 10
SR=REN+ROL_IDSE LD

';DTYTIAHJ"

U=EMORM DL

SuA=H+UeIORT 1, —R3ED

WD =AY L S0+ D

WeTe do=xadd

TCI=TE I+

EZDCI=ESD L +5 (> #x (D

COMTIMUE

D3 &5 L=1sK

DO &7 J=1:K

Py DosPuls D+ (LD #X{1n
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VOCOATINUE
S COMTIMUE
WEITECZy 100 W Tse dd s d=1s KD
100 FORMATCFFER. =
WRITECZy 105
105 FORMBTCIL
SOCOMTIMUE
CALL ZLOZEF (2, "RICORE™D
r D3 70 I=1.K
I EMOIy =TIy AN
a0 MI=CAMSEEDCIN T Ol T I o RM e C3M~1. 30
ERNL CEDCIN=50RT %I
FEDN D F1 J=1».1
AN AL =AM eP (I Lo =TI oT D2 o AN CAN=-1. 00
2410 RO =0T dCEZDC I #ESD A
ROl I =ER Iy I
0 T1 ZOHTIMUE
0 VIOOCOMTIMUE
0 FRINT 20,
230 S0 FORMAT OS5 "ZAMPLE MEAMT AMD STAMD.DEY. .00
1000 MEITECG» 2Dy EMCIrsI=1ekd
1010 WM ITE VG35 (ESDCIssI=1skn
1020 =23 D,HHTx_JaTFZ.Bb
1025 LHLL CLOZEF 3 " ZMMI"
1030 PRIMT 20y
1040 F0 FORMAT /o2 S "CORRELATIONE MATRIN"» .o
1050 D3O 21 I=1sK
104A10 WZITE £325332) (ERCIsdred=1ekn
torn TOTMAT CRF10. T
1030 COMTINUE
105 CHLL CLOZEFCZs "MATRIX")
1030 ZHD

LF

o

Su]
s

ar
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